Constructions and nonexistence results for suitable sets of permutations

نویسندگان

  • Justin H. C. Chan
  • Jonathan Jedwab
چکیده

A set of N permutations of {1, 2, . . . , v} is (N, v, t)-suitable if each symbol precedes each subset of t − 1 others in at least one permutation. The central problems are to determine the smallest N for which such a set exists for given v and t, and to determine the largest v for which such a set exists for given N and t. These extremal problems were the subject of classical studies by Dushnik in 1950 and Spencer in 1971. We give examples of suitable sets of permutations for new parameter triples (N, v, t). We relate certain suitable sets of permutations with parameter t to others with parameter t + 1, thereby showing that one of the two infinite families recently presented by Colbourn can be constructed directly from the other. We prove an exact nonexistence result for suitable sets of permutations using elementary combinatorial arguments. We then establish an asymptotic nonexistence result using Ramsey’s theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharply $(n-2)$-transitive Sets of Permutations

Let $S_n$ be the symmetric group on the set $[n]={1, 2, ldots, n}$. For $gin S_n$ let $fix(g)$ denote the number of fixed points of $g$. A subset $S$ of $S_n$ is called $t$-emph{transitive} if for any two $t$-tuples $(x_1,x_2,ldots,x_t)$ and $(y_1,y_2,ldots ,y_t)$ of distinct elements of $[n]$, there exists $gin S$ such that $x_{i}^g=y_{i}$ for any $1leq ileq t$ and additionally $S$ is called e...

متن کامل

Nonexistence and existence results for a 2$n$th-order $p$-Laplacian discrete Neumann boundary value problem

This paper is concerned with a 2nth-order p-Laplacian difference equation. By using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. Results obtained successfully generalize and complement the existing ones.

متن کامل

Permutations and wellfoundedness: the true meaning of the bizarre arithmetic of Quine's NF

It is shown that, according to NF, many of the assertions of ordinal arithmetic involving the T -function which is peculiar to NF turn out to be equivalent to the truth-in-certain-permutation-models of assertions which have perfectly sensible ZF-style meanings, such as: the existence of wellfounded sets of great size or rank, or the nonexistence of small counterexamples to the wellfoundedness o...

متن کامل

Modelling Decision Problems Via Birkhoff Polyhedra

A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...

متن کامل

On the Nonexistence of the Ding-Helleseth-Martinsens Constructions of Almost Difference Set for Cyclotomic Classes of Order 6

Pseudorandom sequences with optimal three-level autocorrelation have important applications in CDMA communication systems. Constructing the sequences with three-level autocorrelation is equivalent to finding cyclic almost difference sets as their supports. In a paper of Ding, Helleseth, and Martinsen, the authors developed a new method known as the Ding-Helleseth-Martinsens Constructions in lit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 148  شماره 

صفحات  -

تاریخ انتشار 2017